Dynamic Programming for Linear-Time Incremental Parsing

نویسندگان

  • Liang Huang
  • Kenji Sagae
چکیده

Incremental parsing techniques such as shift-reduce have gained popularity thanks to their efficiency, but there remains a major problem: the search is greedy and only explores a tiny fraction of the whole space (even with beam search) as opposed to dynamic programming. We show that, surprisingly, dynamic programming is in fact possible for many shift-reduce parsers, by merging “equivalent” stacks based on feature values. Empirically, our algorithm yields up to a five-fold speedup over a state-of-the-art shift-reduce dependency parser with no loss in accuracy. Better search also leads to better learning, and our final parser outperforms all previously reported dependency parsers for English and Chinese, yet is much faster.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Incremental Dynamic Analysis Using Reduction of Ground Motion Records

Incremental dynamic analysis (IDA) requires the analysis of the non-linear response history of a structure for an ensemble of ground motions, each scaled to multiple levels of intensity and selected to cover the entire range of structural response. Recognizing that IDA of practical structures is computationally demanding, an approximate procedure based on the reduction of the number of ground m...

متن کامل

Optimal Incremental Parsing via Best-First Dynamic Programming

We present the first provably optimal polynomial time dynamic programming (DP) algorithm for best-first shift-reduce parsing, which applies the DP idea of Huang and Sagae (2010) to the best-first parser of Sagae and Lavie (2006) in a non-trivial way, reducing the complexity of the latter from exponential to polynomial. We prove the correctness of our algorithm rigorously. Experiments confirm th...

متن کامل

Multi-lingual Dependency Parsing with Incremental Integer Linear Programming

Our approach to dependency parsing is based on the linear model of McDonald et al.(McDonald et al., 2005b). Instead of solving the linear model using the Maximum Spanning Tree algorithm we propose an incremental Integer Linear Programming formulation of the problem that allows us to enforce linguistic constraints. Our results show only marginal improvements over the non-constrained parser. In a...

متن کامل

Efficient Incremental Parsing for Context-Free Languages

An incremental parsing algorithm based on dynamic programming techniques is described’. The analyzer takes the automaton generated from a general class of context-free grammars as driver, and any finite string as input. Given an input string that has been modified, the algorithm cuts out the parts of the old analysis that had been generated b y the parts of the input that has changed. What rema...

متن کامل

Type-Driven Incremental Semantic Parsing with Polymorphism

Semantic parsing has made significant progress, but most current semantic parsers are extremely slow (CKY-based) and rather primitive in representation. We introduce three new techniques to tackle these problems. First, we design the first linear-time incremental shift-reduce-style semantic parsing algorithm which is more efficient than conventional cubic-time bottom-up semantic parsers. Second...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010